Daylight performance of toplighting: An overview

Document Type : Original Article


School of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, Iran


Novel and advanced daylighting strategies and systems can noticeably decrease artificial lighting consumption and considerably improve light quality in the interior environments. In modern architecture, employment of rooflights is prevalent since they transmit daylight into deep plans or spaces lacking facade. Although, the use of this system is more common in temperate and cold climates, because of its severe thermal effects, it can be used in all the climates by innovative design strategies. Proper design of rooflights can significantly reduce energy use of lighting, heating, and cooling. Accordingly, the present study was designed to present an overview of toplighting field surveys conducted between 1984 and 2021. In this review study, analytical methods, efficient design parameters, and their effects on daylight and energy performance of the rooflights were investigated. These parameters include rooflight and indoor environmental conditions. Reviewed studies have utilized various methods such as analytical formulae, computer simulation, and experimental designs to investigate performance of the rooflight. The key point is finding or designing a proper state of toplighting in order to increase energy efficiency of the building while improving visual comfort. Also, studying effective rooflight design parameters presents practical guidelines for future studies.


  1. Acosta, I., Navarro, J., Sendra, J.J. (2013a). “Daylighting design with lightscoop skylights: Towards an optimization of shape under overcast sky conditions.” Energy Build. 60, 232–8.       
  2. Acosta, I., Navarro, J., Sendra, J.J. (2013b). “Towards an analysis of the performance of monitor                                                      skylights under overcast sky conditions.” Energy Build. 64, 10–16.
  3. Acosta, I., Navarro, J., Sendra, J.J. (2015). “Towards an analysis of the performance of monitor skylights under overcast sky conditions.” Energy Build. 88, 248–61. doi: 10.1016/j.enbuild.2014.12.011.
  4. Acosta, I., Navarro, J., Sendra, J.J., Esquivias, P. (2012). “Daylighting design with lightscoop skylights: Towards an optimization of proportion and spacing under overcast sky conditions.” Energy Build. 49, 394–401. doi:10.1016/j.enbuild.2012.02.038.
  5. Al-Obaidi, K.M., Ismail, M., Rahman, A.M.A. (2014). “A study of the impact of environ-mental loads that penetrate a passive skylight roofing system in Malaysian buildings.” Front. Archit. Res. 178–191.
  6. Al-Obaidi, K.M., Ismail, M.A., Munaaim, M.A.C., Abdul Rahman, A.M. (2017). “Designing an integrated daylighting system for deep-plan spaces in Malaysian low-rise buildings.” Sol Energy. 149, 85–101. doi:10.1016/j.solener.2017.04.001.
  7. Alraddadi, T.A. (2004). “The effect of the stepped section atrium on daylighting performance.” Archit Sci Rev. 47, 303–10. doi:10.1080/00038628.2000.9697536.
  8. Al-Turki, I., Schiler, M. (1997). “Predicting natural light in atria and adjacent spaces using physical models.” Sol Energy. 59, 241-245.
  9. Asdrubali, F. (2003). “Daylighting performance of sawtooth roofs of industrial buildings.” Light Res Technol. 35, 343–58. doi:10.1191/1365782803li094oa.
  10. Baker, N., Fanchiottik, A., Steemers, K. (1993). Daylighting in architecture, A European Reference Book. London: James & James. 1–6.
  11. Boubekri, M. (1995). “The effect of the cover and reflective properties of a four-sided atrium on the behaviour of light.” Archit Sci Rev. 38, 3–8.
  12. Boubekri, M., Anninos, W. (1995). “Skylight wells: A finite- element approach to analysis of efficiency.” Light Res Technol. 27, 153_159.
  13. Bugeat, A., Beckers, B., Fernandez, E. (2020). “Improving the daylighting performance of residential light wells by reflecting and redirecting approaches. ” Sol Energy. 207, 1434–1444.
  14. Cabeza-Lainez, J., Almodovar-Melendo, J.M., Dominguez, I. (2019). “Daylight and architectural simulation of the Egebjerg school (Denmark): Sustainable features of a new type of skylight”. Sustainability.
  15. Calcagni, B., Paroncini, M. (2004). “Daylight factor prediction in atria building designs.” Sol Energy. 76, 669–82.
  16. Cantin, F., Dubois, M. (2011). “Daylighting metrics based on illuminance, distribution glare and directivity.” Light Res Technol. 43(3), 291–307.
  17. Carlucci, S., Causone, F., DeRosa, F., Pagliano, L. (2015). “A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design.” Renewable and Sustainable Energy Reviews. 47, 1016–1033.
  18. CIBSE (1999). Daylighting and window design, Chartered institution of building services engineers, London.
  19. Cole, R.J. (1990). “The effect of the surfaces enclosing atria on the daylight in adjacent spaces.” Build Environ. 25, 37–42. doi:10.1016/0360-1323(90)90039-T.
  20. Dewey, E.J., Littlefair, P.J. (1998). “Rooflight spacing and uniformity.” Light Res Technol. 30, 119–25. doi:10.1177/096032719803000305.
  21. Du, J., Sharples, S. (2010a). “Analysing the impact of reflectance distributions and well geometries on vertical surface daylight levels in atria for overcast skies.” Build Environ. 45, 1733–45. doi:10.1016/j.buildenv.2010.01.026.
  22. Du, J., Sharples, S. (2010b). “Daylight in atrium buildings: Geometric shape and vertical sky components.” Light Res Technol. 42, 385–97. doi:10.1177/1477153510366184.
  23. Du, J., Sharples, S. (2011a). “Assessing and predicting average daylight factors of adjoining spaces in atrium buildings under overcast sky.” Build Environ. 46, 2142–52. doi:10.1016/j.buildenv.2011.04.020.
  24. Du, J., Sharples, S. (2011b). “The assessment of vertical daylight factors across the walls of atrium buildings , Part 2 : Rectangular atria.” Light Res Technol. 44, 1–15. doi: 10.1177/1477153511412531.
  25. Du, J., Sharples, S. (2011c). “The variation of daylight levels across atrium walls: Reflectance distribution and well geometry effects under overcast sky conditions.” Sol Energy. 85, 2085–100. doi:10.1016/j.solener.2011.05.015.
  26. Du, J., Sharples, S. (2012). “The assessment of vertical daylight factors across the walls of atrium buildings, Part 1: Square atria”. Light Res Technol. 44, 109–23. doi:10.1177/1477153511412530.
  27. Edmonds, I.R. (1993). “Performance of laser cut light deflecting panels in daylighting Applications”. Solar Energy Materials and Solar Cells. 29, 1_26.
  28. Edmonds, I.R., Jardine, P.A., Rutledge, G. (1995). “Daylighting with angular-selective skylights: Predicted performance”. Light Res Technol. 28, 122_130.
  29. El-Abd, W., Kamel, B., Afify, M., Dorra, M. (2018). “Assessment of skylight design configurations on daylighting performance in shopping malls: A case study”. Sol Energy. 170, 358–68. doi:10.1016/j.solener.2018.05.052.
  30. Falt, M., Pettersson, F., Zevenhoven, R. (2017). “Modified predator-prey algorithm approach to designing a cooling or insulating skylight”. Building and Environment. 331–338.
  31. Fan, Zh., Yang, Z., Yang, L. (2020). “Daylight performance assessment of atrium skylight with integrated semi-transparent photovoltaic for different climate zones in China”. Building and Environment. Doi:
  32. Fang, Y., Cho, S. (2019). “Design optimization of building geometry and fenestration for daylighting and energy performance”. Solar Energy. 191: 7–18.
  33. Fazeli, N., Mahdavinejad, M., Bemaniyan, R. (2019). “Dynamic Envelope and Control Shading Pattern for Office Buildings Visual Comfort in Tehran”. Space Ontology International Journal. 8(3): 31–40.
  34. Fontoynont, M., Place, W., Bauman, F. (1984). “Impact of electric lighting efficiency on the energy saving potential of daylighting from roof monitors.” Energy Build. 6, 375–86. doi:10.1016/0378-7788(84)90020-3.
  35. Galal, K.S. (2019). “The impact of atrium top materials on daylight distribution and heat gain in the Lebanese coastal zone”. Alexandria Engineering Journal. 58: 659–676.
  36. Garcia-Hansen, V., Esteves, A., Pattini, A. (2002). “Passive solar systems for heating, daylighting and ventilation for rooms without an equator-facing façade”. Renew Energy. 26, 91–111. doi:10.1016/S0960-1481(01)00089-1.
  37. Ghasemi, M., Noroozi, M., Kazemzadeh, M., Roshan, M. (2015). “The influence of well geometry on the daylight performance of atrium adjoining spaces: A parametric study”. J Build Eng. 3, 39–47. doi:10.1016/j.jobe.2015.06.002.
  38. Henriques, G.C., Duarte, J.P., Leal, V. (2012). “Strategies to control daylight in a responsive skylight system”. Autom Constr. 28, 91–105. doi:10.1016/j.autcon.2012.06.002.
  39. Huang, Y., Borong, L., Yao, N., Yingxin, Z. (2015). “Functional Relationship between Lighting Energy Consumption and the Main Parameters for Double Atrium Offices”. Procedia Eng. 121, 1869–1879. doi: 10.1016/j.proeng.2015.09.169
  40. Illuminating Engineering Society of North America (IESNA), (2013). “IES LM-83-12 IES Spatial Daylight. Autonomy (sDA) and Annual Sunlight Exposure (ASE).” IESNA Lighting, New York, United States.
  41. Iyer-Raniga, U. (1994). “Daylighting in atrium spaces.” Archit Sci Rev. 37, 195–208. doi:10.1080/00038628.1994.9697347.
  42. Kim, C.S., Chung, S.J. (2011). “Daylighting simulation as an architectural design process in museums installed with toplights.” Build Environ. 46, 210–22. doi:10.1016/j.buildenv.2010.07.015.
  43. Kim, C.S., Seo, K.W. (2012). “Integrated daylighting simulation into the architectural design process for museums.” Build Simul. 5, 325–36. doi:10.1007/s12273-012-0084-5.
  44. Kim, G., Kim, J.T. (2010). “Luminous impact of balcony floor at atrium spaces with different well geometries”. Build Environ. 45, 304–10. doi:10.1016/j.buildenv.2009.08.014.
  45. Koster, H. (2012). “Daylighting Controls, Performance and Global Impacts”. Encyclopaedia of Sustainability Science and Technology, Springer New York. 2846–2896.
  46. Kristl, Ž., Krainer, A. (1999). “Light wells in residential building as a complementary daylight source”. Sol Energy. 65, 197–206. doi:10.1016/S0038-092X(98)00127-3.
  47. Laborda, M.Á.C., García, I.A., Escudero, J.F.A., Sendra, J.J. (2015). “Towards finding the optimal location of a ventilation inlet in a roof monitor skylight, using visual and thermal performance criteria, for dwellings in a Mediterranean climate.” J Build Perform Simul. 8, 226–38. doi:10.1080/19401493.2014.913683.
  48. Lam, W.M.C. (1986). Sunlighting as formgiver for Architecture. New York: Van Nostrand Reinhold Company Inc. 148.
  49. Laouadi, A., Atif, M.R., Galasiu, A. (2002). “Towards developing skylight design tools for thermal and energy performance of atriums in cold climates.” Build Environ. 12, 1289–316.
  50. Laouadi, A. (2005). “Models of optical characteristics of barrel-vault skylights: Development, validation and application”. Light Res Technol. 37, 235–63.
  51. Laouadi, A., Atif, M.R. (1998). “Transparent domed skylights: Optical model for predicting transmittance, absorptance and reflectance”. Light Res Technol. 30, 111–8.
  52. Lau, B., Duan, Z. (2008). “The daylight benefit conferred upon adjoining rooms by specular surfaces in top-lit atria”. Archit Sci Rev. 51, 204–11. doi:10.3763/asre.2008.5125.
  53. Leung, T.C.Y., Rajagopalan, P., Fuller, R. (2013). “Performance of a daylight guiding system in an office building”. Sol Energy. 94, 253–65. doi:10.1016/j.solener.2013.05.004.
  54. Malekafzali, A.A., Sok, E., Niemasz, J. (2017). “Electrochromic glass vs. fritted glass: An analysis of glare control performance”. Energy Procedia. 122, 343–8. doi:10.1016/j.egypro.2017.07.334.
  55. Mardaljevic, J., Heschong, L., Lee, E. (2009). “Daylight metrics and energy savings”. Light Res Technol. 41(3), 261–83.
  56. Matusiak, B., Aschehoug, M., Littlefair, P. (1999). “Daylighting strategies for an infinitely long atrium: An experimental evaluation.” Light Res Technol. 31, 23–34. doi:10.1177/096032719903100105.
  57. Mohsenin, M., Hu, J. (2015). “Assessing daylight performance in atrium buildings by using Climate Based Daylight Modeling”. Sol Energy. 119, 553–60. doi:10.1016/j.solener.2015.05.011.
  58. Motamedi, S., Liedl, P. (2017). “Integrative algorithm to optimize skylights considering fully impacts of daylight on energy.” Energy Build. 138, 655–65. doi:10.1016/j.enbuild.2016.12.045.
  59. Parent, M.D., Murdoch, J.B. (1989). “Skylight dome-well system analysis from intensity distribution”. Light Res Technol. 21, 111_123.
  60. Philips, D. (2004). Daylighting, Natural light in architecture. Oxford: Elsevier. 22,23.
  61. Ruck, N. (2000). Daylight in buildings. Berkeley: Lawrence Berkeley National Laboratory.
  62. Rastegari, M., Pournaseri, S., Sanaieian, H. (2020). “Daylight optimization through architectural aspects in an office building atrium in Tehran”. Journal of Building Engineering, doi:
  63. Samant, S. (2011). “Atrium and its adjoining spaces: A study of the influence of atrium façade design”. Archit Sci Rev. 54, 316–28. doi:10.1080/00038628.2011.613640.
  64. Samant, S., Sharples, S. (2004). “Surface reflectance distributions and their effect on average daylight factor values in atrium buildings.” Archit Sci Rev. 47, 177–81. doi:10.1080/00038628.2004.9697041.
  65. Samant, S., Yang, F. (2007). “Daylighting in atria: The effect of atrium geometry and reflectance distribution.” Light Res Technol. 39, 147–57. doi:10.1177/1365782806074482.
  66. Sharp, F., Lindsey, D., Dols, J., Coker, J. (2014). “The use and environmental impact of Daylighting”. J Clean Prod. 462–71.
  67. Sharples, S., Lash, D. (2004). “Reflectance distributions and vertical daylight illuminances in atria.” Light Res Technol. 36, 45–55. doi:10.1191/1477153504li103oa.
  68. Sharples, S., Mahambrey, S. (1999). “Reflectance distributions and atrium daylight levels: A model study”. Light Res Technol. 31, 165–70. doi:10.1177/096032719903100405.
  69. Sharples, S., Mcibse, C., Shea, A.D. (2015). Daylight transmission of atrium roofs under overcast and partly cloudy skies”. Light Res Technol. 32, 153–5. 
  70. Sharples, S., Shea, A.D. (1999). “Roof obstructions and daylight levels in atria: A model study under real skies”. Light Res Technol. 31, 181–5. doi:10.1177/096032719903100408.
  71. Sheppard, R., Wright, H. (1984). Building for daylight. London: George Allen & Unwin Ltd. 11,29.
  72. Sher, F., Kawai, A., Güleç, F., Sadiq, H. (2019). “Sustainable energy saving alternatives in small buildings”. Sustainable Energy Technologies and Assessments. 32: 92–99.
  73. Sudan, M., Mistrick, R.G., Tiwari, G.N. (2017). “Climate-Based Daylight Modeling (CBDM) for an atrium: An experimentally validated novel daylight performance”. Sol Energy. 158, 559–71. doi:10.1016/j.solener.2017.09.067.
  74. Tian, M., Zhang, L., Su, Y., Xuan, Q., Li, G., Lv, H. (2019). “An evaluation study of miniature dielectric crossed compound parabolic concentrator (dCCPC) panel as skylights in building energy simulation”. Solar Energy. 179: 264–278.
  75. Treado, S., Gillette, G., Kusuda, T. (1984). “Daylighting with windows, skylights, and clerestories”. Energy Build. 6, 319–30. doi:10.1016/0378-7788(84)90015-X.
  76. Tsangrassoulis, A., Santamouris, M. (2000). “A Method to estimate the daylight efficiency of round skylights”. Energy Build. 32, 41–5. doi:10.1016/S0378-7788(99)00039-0.
  77. United States Green Building Council (USGBC), (2017). LEED v4: Daylight. Technical report, US Green Building Council.
  78. Yi, R., Shao, L., Su, Y., Riffat, S. (2009). “Daylighting performance of atriums in subtropical climate”. Int J Low-Carbon Technol. 4, 230–7. doi:10.1093/ijlct/ctp027.
  79. Yoon, Y.J., Moeck, M., Mistrick, R.G., Bahnfleth, W.P. (2008). “How Much Energy Do Different Toplighting Strategies Save?” J Archit Eng. 14, 101–10. doi:10.1061/(ASCE)1076-0431(2008)14:4.
  80. Zeinalzadeh, T., Nikghadam, N., Fayaz, R. (2021). “Determining the Proportions of the Living Room to Optimize the Daylight Case Study: A Building with a Common Plan in Tehran”. Space Ontology International Journal. 10(2): 1–17.

Website References